Production and Characterization of Functional Phosphopeptides from Egg Yolk Phosvitin

H. Samaraweera¹, S. H. Moon², E. J. Lee³, J. H. Kim², and **D. U. Ahn²**

¹Dept. Anim. Sci., Faculty of Agriculture, Univ. Peradeniya, Peradeniya, 20400, Sri Lanka; ²Department of Animal Science, Iowa State University, Ames, IA 50010, USA; ³Department of Food and Nutrition, University of Wisconsin-Stout, 301 Heritage Hall, Menomonie, WI 54751, USA

Phosvitin

- A principal phosphoprotein in egg yolk: 1.35-1.50% of yolk (8.0-8.8% of egg yolk proteins)
- Exist in yolk granules in the form of lipovitellinphosvitin complex through phosphocalcic bridge
- Molecular mass of 35-45 kD and contains ~10% phosphorus
 - An excellent metal (iron and calcium) binding capacity.
 - Can bind 148 mol Ca⁺⁺/mol phosvitin at pH 7.0.
- Biological functions: Bone formation, antioxidant during embryo development

Amino Acid Sequence of Egg Yolk Phosvitin

1	AEFGTEPDAKTSSSSSSASSTATSSSSSSSSSSSSPNRKKPMDEEENDQVKQA	50
51	RNKDASSSSRSSKSSNSSKRSSSKSSNSSKRSSSSSSSSSSSSS	100
101	SSSSNSKSSSSSSKSSSSSSSSSSSSSSSSSSSSSSSSS	150
151	SSSKSSSHHSHSHHSGHLNGSSSSSSSSSSSSSHHSHEHHSGHLEDDSSSS	200
201	SSSSVLSKIWGRHEIYQ	217

123 phophoserines

Very Strong Metal Chelating Power

Use of Phosvitin

- Phosvitin is an excellent source for phosphopeptide production
- Phosvitin phosphopeptides
 - Help calcium absorption, calcium retention, bone calcification
 - Can be used as iron supplement
 - Antioxidant and antimicrobial capability
 - Anticancer agent?

Production of Phosphopeptides

- Casein is commercially used to produce phosphopeptides
 - Has only 1 to 13 phosphoserine residues per types (α S1, α S2, β and κ)
 - Japan: as a nutraceutical
 - Denmark: as a calcium supplement (Capolac)
 - Sweden: as a mineral absorption facilitator
- Phosvitin: has ~120 phosphoserine residues
 - Excellent substrate for phosphopeptides production
 - Various sizes and metal binding capacity
 - Diverse functionality and applications
- Extremely difficult to hydrolyze using enzymes
 - Need pre-treatments to improve enzyme hydrolysis of phosvitin
 - Characterization of peptides produced is needed

Amino Acid Sequence of Egg Yolk Phosvitin

1	AEFGTEPDAKTSSSSSSASSTATSSSSSSSSSSPNRKKPMDEEENDQVKQA	50
51	RNKDASSSSRSSKSSNSSKRSSSKSSNSSKRSSSSSSSSSSSSS	100
101	SSSSNSKSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	150
151	SSSKSSSHHSHSHHSGHLNGSSSSSSSSSSSSSHHSHEHHSGHLEDDSSSS	200
201	SSSSVLSKIWGRHEIYQ	217

Pre-enzyme Treatments for Phosvitin

- Acid
- Alkali
- Heat
- Detergents: SDS
- High pressure
- Combinations

Hydrolysis of Phosvitin with Different Enzymes

- 1. Phosvitin
- 2. Trypsin
- 3. α-Chymotrypsin
- 4. Pepsin
- 5. Alcalase
- 6. Multifect ® P3000
- 7. Thermolysin
- 8. Marker

Enzyme Hydrolysis of Phosvitin after Heat Treatment

- 1. Phosvitin (PV)
- 2. PHT Pv
- 3. P-3000
- 4. PHT PV-P-3000
- 5. Alcalase
- 6. Alc.-PHT PV
- 7. Thermo.
- 8. PHT PV-Thermo.
- 9. MM

After 1 hr at 100 C pre-heat treatment (PHT) and then hydrolysis

Phosvitin Pre-treated with Heat and then Hydrolyzed with Acid or Alkali

- 1- Phosvitin
- 2- pH-2, w/o pre-trt
- 3- pH-2, 85 °C, 30 min
- 4- pH-3, 85 °C, 30 min
- 5- pH 12, 85 °C, 30 min
- 6- pH-13, 85 °C, 30 min
- 7- Molecular Marker

Enzyme Hydrolysis of Phosvitin with Various Pre-Treatment Combinations

Characterization of Phosphopeptides

Chemical

- Metal binding capacity
- Free radical chelating

Functional

- Antioxidant
- Anticancer
- ACE-inhibiting activity

Structural

Mass spectrometry: MS/MS, MALDI-TOF

Antioxidant Activities of Phosvitin and its Enzyme Hydrolysates

Oil emulsion was added with 10 ppm Fe²⁺

Fe³⁺-Chelating Activity of Heat Pre-Treated Enzyme Hydrolysates of Phosvitin

- Tris-malate buffer, pH 6.8 was used
- PT: phosvitin pre-treated at 100 °C, 60 min.

Ca⁺²-Solubilizing Activity of phosvitin, and its Alkaline and Acid Hydrolysates

- Pv- Natural phosvitin;
- 0.05 N NaOH-Pv-Phosvitin treated with 0.05 N NaOH at 37 °C for 3 h;
- 0.1 N NaOH-Pv- Phosvitin treated with 0.1 N NaOH at 37 °C for 3 h;
- 2 N HCl-Pv-Phosvitin treated with 2 N HCl at 60°C for 6 h;
- 3 N HCl-Pv- Phosvitin treated with 3 N HCl at 60°C for 6 h;
- 6 N HCI-Pv-Phosvitin treated with 6 N HCl at 60°C for 6 h.

Fe⁺³-Binding Activity of Acid and Alkali Hydrolysates of Phosvitin

- Pv- Natural phosvitin;
- 0.05 N NaOH-Pv-Phosvitin treated with 0.05 N NaOH, at 37°C for 3 h;
- 0.1 N NaOH-Pv-Phosvitin treated with 0.1 N NaOH at 37°C for 3 h;
- 2 N HCl-Pv-Phosvitin treated with 2 N HCl at 60°C for 6 h;
- 3 N HCl-Pv-Phosvitin treated with 3 N HCl at 60°C for 6 h;
- 6 N HCl-Pv-Phosvitin treated with 6 N HCl at 60°C for 6 h;

Recent Advancement in Enzymatic Hydrolysis of Phosvitin

Enzyme Hydrolysis of Phosvitin with Various Pre-Treatment Combinations

Pressurized-Heat on the Ca⁺²-Solubilizing Activity of Phosvitin Hydrolysates

Samples 1-6

(■): Normal heat

(**)**: Pressurized-heat

1: Pre-treatment alone

2: Pre-treatment + Trypsin

3: Pre-treatment + Protex 6L

4: Pre-treatment + Multifect 14L

5: Pre-treatment + Protex 6L+Trypsin

6: Pre-treatment + Multifect 14L+Trypsin

• CaCl₂ (1 mg/mL) in phosphate buffer (pH 7.6) was used.

Pressurized-Heat Treatment on the Fe³⁺- and Cu²⁺- Chelating Activity of Phosvitin Hydrolysates

Fe³⁺-chelating activity (□), Cu²⁺-chelating activity (□)

1-Native phosvitin; 2-pressurized heat treated phosvitin; 3-Trypsin hydrolysate of pressurized heat PSV; 4-protex 6L hydrolysate of pressurized heat PSV; 5-thermolysin hydrolysate of pressurized heat PSV; 6-multifect P3000 hydolysate of pressurized heat PSV; 7- protex 6L+trypsin hydrolysate of pressurized heat PSV; 8-thermolysin+trypsin hydrolysate of pressurized heat PSV; 9-multifect 14L+trypsin hydrolysate of pressurized heat PSV.

Pressurized-Heat Treatment on the Antioxidant Activity of Phosvitin Hydrolysates

Sample (4 mg/ml sample)	Antioxidant activity (%)
Control	-
Native phosvitin	64.48±0.01
Pressurized heat-treated phosvitin	49.75±0.07
Pressurized heat + Trypsin	52.94±0.03
Pressurized heat + Protex 6L	51.47±0.02
Pressurized heat + Thermolysin	59.47±0.01
Pressurized heat + Protex 6L+ trypsin	45.96±0.08
Pressurized heat + Thermolysin + trypsin	48.76±0.05

Pressurized-Heat Treatment on the ACE-Inhibitory Activity of Phosvitin Hydrolysates

1- Natural phosvitin; 2 – pressurized heat treated phosvitin; 3 - phosvitin hydrolyzed with trypsin; 4 - phosvitin hydrolyzed with elastase; 5 - phosvitin hydrolyzed with pepsin; 6 - phosvitin hydrolyzed with protex 6L; 7 - phosvitin hydrolyzed with thermolysin; 8 -phosvitin hydrolyzed with multifect P3000; 9 - phosvitin hydrolyzed with pepsin+trypsin; 11 - phosvitin hydrolyzed with protex 6L+try p; 12 – phosvitin hydrolyzed with thermolysin+trypsin; 13 - phosvitin hydrolyzed with Multifect P3000+ trypsin

Pressurized-Heat Treatment on the Anticancer Effects of Phosvitin Hydrolysates

- Protex 6L+trypsin
- Thermolysin+trypsin
- (A) HeLa cell
- (B) MCF-7 cell
- (C) AGS cell
- (D) HT-29 cell
- (E) LoVo cell

Pressurized-Heat Treatment on the IC₅₀ Value of Phosvitin Hydrolysates

	Cell line	IC ₅₀ (mg/mL)				
Sample		HeLa	MCF-7	AGS	HT-29	LoVo
pressurized heat alone		> 20	> 20	> 20	> 20	> 20
Pressurized heat + Trypsin		> 20	> 20	> 20	> 20	> 20
Pressurized heat + Protex 6L hydrolys	ate	> 20	> 20	> 20	> 20	> 20
Pressurized heat + Thermolysin		3.68	0.79	1.33	0.90	1.33
Pressurized heat + Protex 6L + Trypsir	ו	4.98	4.97	5.67	3.79	7.13
Pressurized heat + Thermolysin + Tryp	osin	1.12	0.67	8.69	0.83	1.27

Structural Characterization of Phosphopeptides

- Structural information is important for the production of highly functional phosphopeptides
 - Types of peptides produced
 - Structure-function relationship
- Improving enzymatic digestion of phosvitin is important
 - Pre-treatments for high degree of digestion
- Use of capillary HPLC coupled with MS, MALDI-TOF

SDS-PAGE of Heat-Pretreated Phosvitin Hydrolyzed with Pepsin, Trypsin and Thermolysin

Identified Peptides in the Pepsin and Thermolysin Hydrolysates of Heat Pre-Treated Phosvitin using MALDI-TOF¹

Position ²	Sequence	m/z Observed	m/z Predicted		
Pepsin hydrolysis					
2-22	EFGTEPDAKTSSSSSSASSTA (+1 PO ₄)	2113.427	2113.8-2115.0		
4-22	GTEPDAKTSSSSSSASSTA (+8 PO ₄)	2397.525	2396.2-2397.7		
7-28	PDAKTSSSSSASSTATSSSSS	1288.28	1288.6-1289.4		
23-30	TSSSSSA	875.663	873.3-873.6		
Thermolysin hydrolysis					
193-205	EDDSSSSSSSV (+2 PO ₄)	1446.7	1446.5-1447.2		
205-214	VLSKIWGRHE (+1 PO ₄)	1304.7	1304.7-1305.4		
209-214	IWGRHE	797.1	797.4-797.9		
209-215	IWGRHEI	910.3	910.5-911.1		
209-217	IWGRHEIYQ	1201.6	1201.6-1202.4		
210-215	WGRHEI	797.1	797.4-797.9		

¹Phosvitin was heat-pretreated for 60 min at 100 °C, dephosphorylated for 24 h using alkaline phosphatase, and then hydrolyzed 24 h using pepsin or thermolysin.

²Amino acid position in phosvitin.

MALDI Spectra of the Peptides from Trypsin Hydrolysate of the Heat-Pretreated Phosvitin

Phosvitin was heat-pretreated at 100 °C for 60 min and then hydrolyzed using trypsin for 24 h at 37 °C.

Identified Peptides in the Trypsin Hydrolysates of the Heat Pre-Treated Phosvitin using MALDI-TOF¹

Position ²	Sequence	m/z Observed	m/z Predicted
1-10	AEFGTEPDAK (+1 PO ₄)	1093.272	1092.5-1093.2
64-80	SSNSSKRSSSKSSNSSK (+8 PO ₄)	2411.509	2412.6-2413.7
81-94	RSSSSSSSSSSR (+8 PO ₄)	2042.147	2043.4-2044.2
81-94	RSSSSSSSSSSR (+9 PO ₄)	2122.32	2123.3-2124.2
81-94	RSSSSSSSSSSR (+10 PO ₄)	2202.887	2203.3-2204.2
81-94	RSSSSSSSSSSR (+11 PO ₄)	2284.002	2283.3-2284.7
82-94	SSSSSSSSSSR (+3 PO ₄)	1460.6	1459.4-1460.1
82-94	SSSSSSSSSSR (+4 PO ₄)	1540.6	1539.4-1540.1
82-94	SSSSSSSSSSR (+5 PO ₄)	1620.3	1620.4-1621.0
115-121	SSSSSR	804.595	805.3-805.7
128-154	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	3426.55	3427.7-3429.3
179-208	RSVSHHSHEHHSGHLEDDSSSSSSSVLSK	3101.035	3098.4-3100.2

¹Phosvitin was heat-pretreated for 60 min at 100 °C, dephosphorylated for 24 h using alkaline phosphatase, and then hydrolyzed 24 h using trypsin.

²Amino acid position in phosvitin.

MALDI Spectra of the Peptides from Trypsin Hydrolysate of the Partially Dephosphorylated, Heat-Pretreated Phosvitin

Phosvitin was heat-pretreated at 100 °C for 60 min and then partially dephosphorylated (24 h at 37 °C) using alkaline phosphatase before trypsin hydrolysis for 24 h at 37 °C.

Identified Peptides in the Trypsin Hydrolysates of Partially Dephosphorylated, Heat Pre-Treated Phosvitin using MALDI-TOF

Position ²	Sequence	m/z Observed	m/z Predicted
36-48	KKPMDEEENDQVK	1589.7	1589.7-1590.8
37-60	KPMDEEENDQVKQARNKDASSSSR (+3 PO ₄)	2990.1	2989.2-2990.9
54-60	DASSSSR (+4 PO4)	1030.3	1029.2-1029.8
82-94	SSSSSSSSSR (+3 PO ₄)	1460.6	1459.4-1460.1
82-94	SSSSSSSSSR (+4 PO ₄)	1540.6	1539.4-1540.1
108-121	SSSSSKSSSSSR (+1 PO ₄)	1428.7	1427.6-1428.3
108-121	SSSSSKSSSSSR (+8 PO ₄)	1986.7	1987.3-1988.2
108-123	SSSSSKSSSSSRSR (+3 PO ₄)	1830.9	1830.6-1831.5
115-123	SSSSSRSR (+5 PO ₄)	1339.6	1340.3-1340.8
124-142	SSSKSSSSSSSSSSSK	1754.9	1754.8-1755.7
124-154	SSSKSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	2990.1	2989.2-2990.8
155-179	SSSHHSHSHHSGHLNGSSSSSSSR (+1 PO ₄)	2636.4	2637.1-2638.5

¹Phosvitin was heat-pretreated for 60 min at 100 °C, dephosphorylated for 24 h using alkaline phosphatase, and then hydrolyzed 24 h using trypsin.

²Amino acid position in phosvitin.

Summary

- Enzyme hydrolysis of phosvitin was very difficult
- Pre-treatment of phosvitin improved the enzyme hydrolysis, but pressurized heat worked the best
- Phosvitin hydrolysates maintained most of the chemical characteristics of phosvitin
- Hydrolysis of phosvitin improved the anticancer and ACEinhibitory functions of phosvitin
- Size-function relationship as well as the amino acid sequence of phosphopeptides on their functions remained to be determined

Questions?