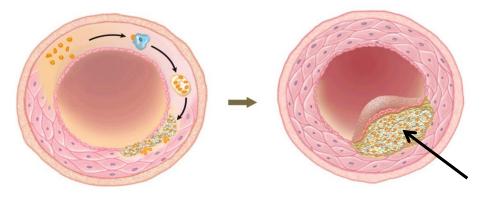
Dietary cholesterol, serum lipids, and heart disease: are eggs working for or against you?

Christopher Blesso, Ph.D.
October 5, 2016

NUTRITIONAL SCIENCES

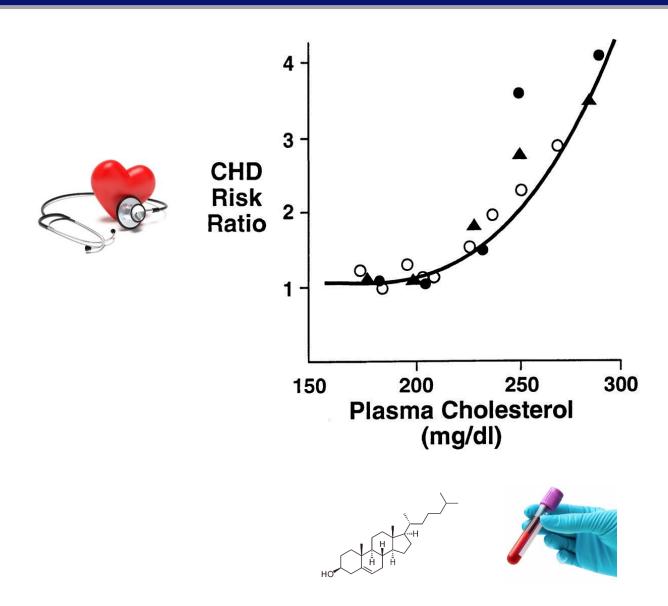
Overview

- Dietary cholesterol, eggs, and serum cholesterol
- LDL, HDL, and the LDL/HDL ratio in clinical studies
- Lipoprotein particles and heart disease
- Egg sphingomyelin and cholesterol levels



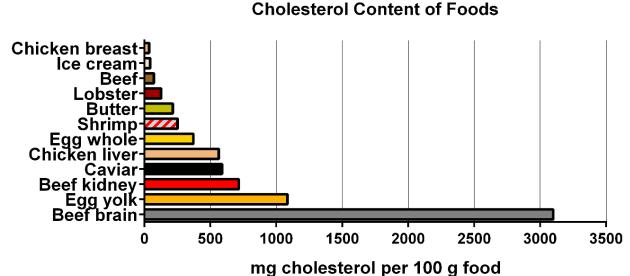
Cholesterol and heart disease

- Atherosclerosis disease in which cholesterol and fibrous materials are deposited in artery walls, contributes to heart disease
 - Blockage of blood flow, death of heart cells (heart attack) or brain cells (stroke)


Key factors:

- -Serum cholesterol
- -Inflammation

Cholesterol & fibrous material


Relationship between blood cholesterol and risk for coronary heart disease (CHD) in observational studies

Egg yolk and dietary cholesterol

- 1 large egg yolk contains 185-200 mg cholesterol
 - Relatively low in saturated fat (19% kcal from saturated fat)
- Average daily intake in U.S. is 270 mg/day
- 25% of total cholesterol intake in U.S. comes from egg products

Is egg consumption linked with heart disease in observational studies?

- Healthy populations: Most studies show a lack of association between egg consumption and heart disease^{1,2}
- Diabetics: Meta-analyses show 54%¹, 69%², and 83%³ increased risks of heart disease
- Typically fail to account for saturated fat intake, intake of whole eggs vs. egg without yolks, and methods of preparation which confounds interpretation
- Well-controlled, clinical studies with heart disease endpoints or using surrogate markers (e.g., serum lipids) are needed

Early recommendations to general public: oversimplification of relationship

个 cholesterol in food 个 cholesterol in blood Several decades ↑ heart disease

Much more complicated than this...

Whole body cholesterol metabolism

- Only about 25% of serum cholesterol derived from diet
- The rest is derived from endogenous synthesis

- Total body cholesterol synthesis: 840 mg/day
- Dietary cholesterol: 400 mg/day
- Absorb about 60%: 240 mg/day
- Total: 1080 mg/day
- 78% synthesis and 22% from diet

What is the impact of dietary cholesterol on serum cholesterol in humans?

Serum cholesterol response to dietary cholesterol

Table 1. Predicted plasma cholesterol response to a 100 mg/day change in dietary cholesterol

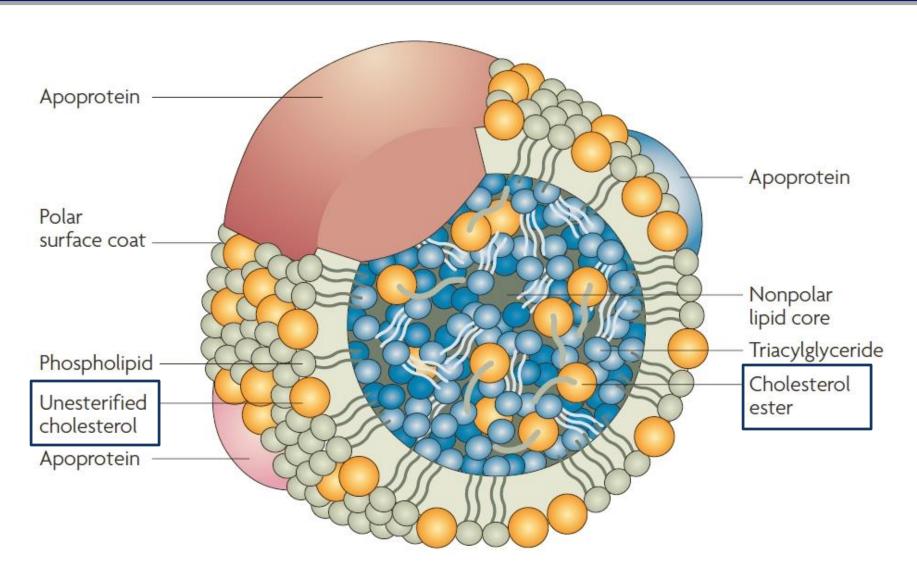
Reference:	△Plasma Cholesterol (mg/dl	L)
Hegsted et al. 1965 [23]	4.5	
Keys et al. 1965 [24]	2.5	
Keys 1984 [25]	2.5	About 2.2.2 E ma/dl change
Hegsted 1986 [26]	4.0	About 2.2-2.5 mg/dL change
NIH 1988 [27]	4.0	in serum cholesterol per 100
McNamara 1990 [20]	2.2	mg dietary cholesterol
Hegsted et al. 1993 [28]	2.7	
Hopkins 1992 [29]	2.5	One egg per day: 个2-3%
McNamara 1995 [30]	2.5	one egg per day. 2 370
Clarke <i>et al.</i> 1997 [21]	2.5	
Howell <i>et al.</i> 1997 [22]	2.2	
McNamara 2000	2.2	

"For the *purpose of controlling the serum level*, dietary cholesterol should not be completely ignored but *attention to this factor alone accomplishes little*" – Dr. Ancel Keys, 1965

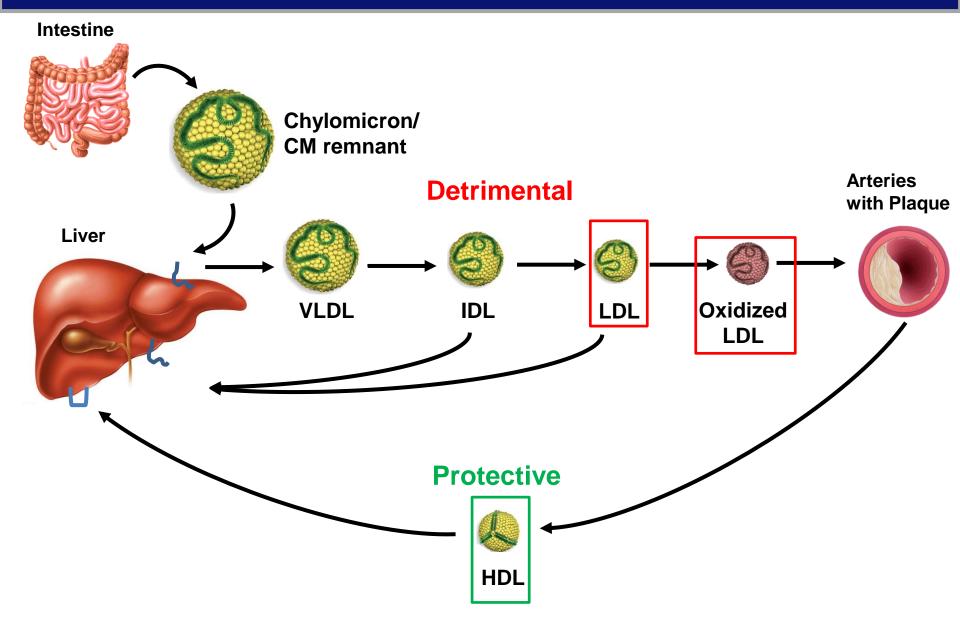
Adaptations to dietary cholesterol intake

- Why such a small change?
- Relatively precise feedback control mechanisms
 - \uparrow dietary cholesterol: \downarrow cholesterol absorption,
 - \downarrow cholesterol synthesis, \uparrow cholesterol excretion

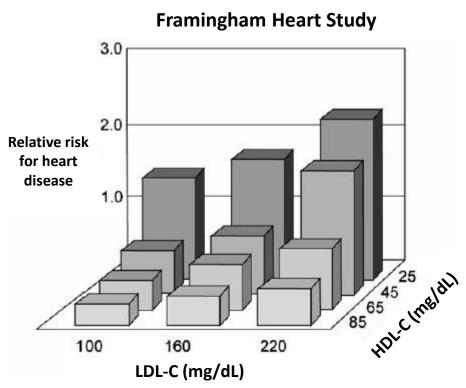
- "Egg man" 88-yr old consumed 20-30 eggs/day with normal serum cholesterol (200 mg/dL)
 - Absorbed only 18% of dietary cholesterol


Significant variability in serum cholesterol response to dietary cholesterol

- Not everyone reacts the same to dietary cholesterol
 - Response is highly variable and depends on genetic and metabolic factors



- Hyporesponders (compensators): 75-85% of population – no alteration or mild increase
- Hyperresponders (non-compensators): ≥ 2.3 mg/dL -15-25% of population


Lipoproteins: transport vehicles for cholesterol in blood

Role of cholesterol-carrying lipoproteins in heart disease

Cholesterol levels as therapeutic targets for heart disease

- LDL-cholesterol (LDL-C): primary target of therapy for heart disease
- HDL-cholesterol (HDL-C): protective against heart disease

LDL-C/HDL-C ratio important

How does egg intake affect LDL, HDL, and the LDL/HDL ratio?

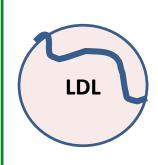
Egg intake during weight maintenance: healthy and hyperlipidemic populations

Study	Design	# days	LDL-C	HDL-C	LDL/HDL
Children					
Ballesteros et al. 2004	2 eggs per day vs. egg substitute	30	↑	↑	\leftrightarrow
Adults					
Herron et al. 2002 Healthy women	3 eggs per day vs. egg substitute	30	Hyperresponders: ↑ Hyporesponders: ↔	Hyperresponders: ↑ Hyporesponders: ↔	\leftrightarrow
Greene et al. 2005 Healthy elderly men/women	3 eggs per day vs. egg substitute	30	↑	↑	\leftrightarrow
Knopp et al. 2003 Insulin-sensitive	4 eggs per day vs. egg substitute	28	↑	↑	ND**
Hyperlipidemic					
Knopp et al. 1997 Hypercholesterolemic (HC) and combined hyperlipidemic (CHL) men/women	2 eggs per day vs. egg substitute	84	HC: ←> CHL: ↑	↑	ND
Vishwanathan et al. 2009 Statin-taking elderly	2 or 4 eggs per day vs. egg exclusion	35	2 eggs: ↔ 4 eggs: ↑	↑	\leftrightarrow

Egg intake during weight maintenance: insulinresistant and diabetic populations

Study	Design	# days	LDL-C	HDL-C	LDL/HDL
Insulin-resistant					
Knopp et al. 2003 insulin-resistant (IR), obese insulin-resistant (OIR)	4 eggs per day vs. egg substitute	28	IR: ↔ OIR: ↔	IR: 个 OIR: 个	ND**
Diabetic					
Ballesteros et al. 2015 Diabetic patients	1 egg per day vs. oatmeal breakfast	35	\leftrightarrow	\leftrightarrow	\leftrightarrow
Fuller et al. 2015 Diabetic patients	2 eggs per day vs. egg exclusion	42	\leftrightarrow	\leftrightarrow	ND

Egg intake during weight loss



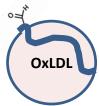
Study	Design	# days	LDL-C	HDL-C	LDL/HDL
Harman et al. 2008 Men/women	2 eggs per day vs. egg exclusion	84	\leftrightarrow	\leftrightarrow	ND**
Mutungi et al. 2008 Overweight/obese men	3 eggs per day vs. egg substitute	84	\leftrightarrow	↑	\leftrightarrow
Pearce et al. 2011 Diabetic patients	2 eggs per day vs. egg exclusion	84	\leftrightarrow	↑	\leftrightarrow
Blesso et al. 2013 Metabolic syndrome men/women	3 eggs per day vs. egg substitute	84	\leftrightarrow	↑	+

LDL and HDL particle characteristics are related to heart disease

"Healthy" LDL and HDL

个 LDL size

Weak link with heart disease


- 个 Total HDL
- 个 HDL size
- Large HDL strongly protective

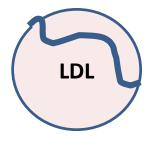
"Heart disease" LDL and HDL

↑ Total and small, dense LDL

Strong link with heart disease

个 Oxidized LDL

• Highly atherogenic

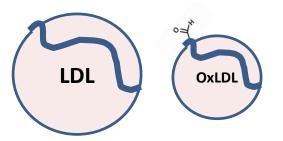


- **↓** Total HDL
- **↓** HDL size
- "Dysfunctional"

Effects of egg intake on lipoprotein atherogenicity

Study	Design	# days	LDL particles	Oxidized LDL	HDL particles
Weight maintenance					
Ballesteros et al. 2004 Children	2 eggs per day vs. egg substitute	30	↑Large LDL ↑LDL size ↓Small LDL	ND**	ND
Herron et al. 2004 Healthy men/women	3 eggs per day vs. egg substitute	30	↑Large LDL	\leftrightarrow	ND
Greene et al. 2006 Healthy elderly men/women	3 eggs per day vs. egg substitute	30	↑Large LDL	ND	↑Large HDL ↑HDL size
Ballesteros et al. 2015 Diabetic patients	1 egg per day vs. oatmeal breakfast	35	\leftrightarrow	\leftrightarrow	\leftrightarrow
Weight loss					
Mutungi et al. 2008 Overweight/obese men	3 eggs per day vs. egg substitute	84	↑ Large LDL	ND	↑Large HDL ↑HDL size
Blesso et al. 2013 Metabolic syndrome men/women	3 eggs per day vs. egg substitute	84	↑ Large LDL	\leftrightarrow	↑Large HDL ↑HDL size

**not determined


Summary of egg effects on LDL and HDL metabolism

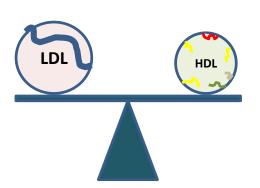
LDL metabolism

↑ LDL-C in hyperresponders, ↔
LDL-C during weight loss

Shifts LDL particles: ↓
strongly atherogenic
small LDL, ↑ less
atherogenic large LDL

⇔ oxidized LDL

HDL metabolism


↑ HDL-C, especially with weight loss

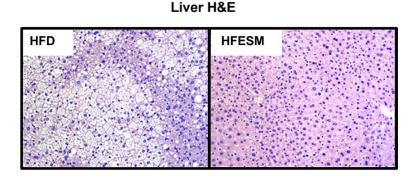
↑ protective large HDL particles

LDL/HDL ratio

Maintains ratio during weight maintenance and weight loss

Eggs are much more than cholesterol

- Types of lipids in eggs
 - Triglycerides
 - Sterols
 - Cholesterol
 - Phospholipids
 - Sphingomyelin


All of the above serve different purposes in the foods we eat and can interact to affect our health

Dietary egg sphingomyelin is lipid-lowering in mice

10-wk high fat, high cholesterol diet (60% kcal fat; 0.2% cholesterol) (HFD) vs. HFD + 0.1% egg sphingomyelin by weight (HFESM)

- Adding egg sphingomyelin at a similar ratio to dietary cholesterol found in egg yolk
- Reductions in serum cholesterol (-22%) and liver triglyceride (-60%) and liver cholesterol (-24%)

Acknowledgments

University of Connecticut

Nutritional Sciences

Maria-Luz Fernandez, PhD

Ji-Young Lee, PhD

Gregory Norris

Caitlin Porter

Christina Jiang

Courtney Millar

Biology

Catherine Andersen, PhD, RD

NUTRITIONAL SCIENCES

Thank you for your attention

