

Lipid oxidation in egg products: impact of process, storage and lipid composition

Anton M., Meynier A., Beaumal V., David-Briand E.

UR1268 BIA (Biopolymères Interactions Assemblages) INRA, 44300, Nantes, France e-mail: marc.anton@inra.fr

Context

- egg products: functional ingredients (liquid or powder) for food industry
 - bakery, sauces, pastas, ready to eat food, ...
 - technofunctionality, sensory and nutritional properties
- strong interest in increasing nutritional properties of eggs by enriching hen diet by ω3 fatty acids
 → ω3 enriched shell eggs
- with the aim to make ω3 enriched egg products, thermomechanical treatments of conservation (pasteurization & spray-drying) can alter these properties → risks of oxidation

Hen's diet (standard vs ω3 supplemented)

Egg's production

Goal of the study

Effect of ω 3 supplementation on lipid oxidation combined with egg processing conditions (pasteurisation, spray-drying and storage)

Yolk: a multi-scale structure

- a new point of view: yolk is a nanoemulsion of LDL structured by granules (network)
- natural nano- and micro- assemblies

Plasma/granules separation

Lipids in egg yolk

- 66% yolk DM
- Ø 17-60 nm
- 90% lipids -
- 10% proteins
- d = 0.98 g/cm³

- 70% TG \rightarrow neutral
- 26% phospholipides
- 3.5% cholestérol
- 0.5% others ...

Lipid oxidation chain ... and products

Liquid egg products

Liquid egg products

• Measures 1- Lipid composition

2- Lipid oxidation and antioxidant levels

3- Physical properties

• ∞3 enriched eggs: **7** PUFA (18:3 n-3 in NL, LC> 20C in PL (22:6))

Lipid oxidation

Secondary products: malondialdehydes (MDA)

diet or pasteurization: slight effect on MDA

 \rightarrow no oxidation

Tocopherols

- diet: no global difference, same levels of tocopherol
- pasteurization: no effect

Conclusion (1)

ω 3 diet effect

- ω 3 enriched eggs contain higher proportion and amount of 18:3 n-3 (LNA) in NL and 22-6 n-3 (DHA) in PL
- ω 3 enriched diet brings important quantities of carotenoids

Pasteurization effect

- carotenoids are consumed during pasteurization
- \rightarrow protective effect against oxidation
- no enhancement of MDA: no oxidation due to this effect

Whatever the sample

- very low level of HPX and MDA
- → no detectable oxidation, no effect on sensorial properties on liquid products

Spray-dried egg products

Egg products: powders

- Storage time \rightarrow 1, 2, 4, 8 months
 - Measures 1- Oxidation and antioxidants 2- Functional properties

Standard diet products

• **7** MDA / liquid

MDA with T° spray-drying important ¬ MDA with storage T° and storage time
 of oxidation due to spray-drying

- differences between pilot and industrial processes
- more detrimental
- levels "reasonable" !
 - no sensorial degradation

Standard diet products

Comparison standards and ω 3

important 7 oxidation due to enrichment in ω 3

• others effects (drying T°, storage T° and time already observed)

Comparison standards and ω 3

- more important
 reserves of lutein for ω3
 samples
- \rightarrow being consumed also
- tocopherol and lutein remains in sufficient levels to act against oxidation

Comparison of whole and standard egg powders

• effect of albumen proteins ? (metals, degradation, ...)

Conclusion (2)

Spray-drying effect

↗ MDA as compared to liquid products

 \rightarrow enhancement of oxidation

highly accentuated by spray-drying T°, and storage time and T° antioxidants are consumed to protect against oxidation

ω 3 diet effect

↗ MDA with w3

 \rightarrow presence of ω 3 PUFA enhances oxidation but ω 3 enriched diets are supplemented in carotenoids

Practical point of view

low levels of oxidation in this study sensorial and nutritional characteristics conserved after 8 months of storage

Functional properties

Thermal properties Fusion profils of lipids

.

Liquid products

- Melting T° of lipids is diminished for ω 3 enriched eggs
- No difference between processing parameters

Physical properties

• Spray-drying disrupts yolk structures (easier lipid extractability) ...

Physical properties

... and affects protein aggregation (lower solubility under higher spray-drying T°)

Emulsifying properties

• Spray-drying allows smaller oil droplets (but slight difference)

• No effect of diet or process parameters

General conclusions

- pasteurization/spray-drying processes combined with enriched ω 3 diets affect physical properties of egg yolk products but the impact on emulsifying properties is poor
- pasteurization and spray-drying, as they are generally conducted, affect oxidation of lipids and this alteration is enhanced by the enrichment in ω 3 PUFA
- the levels of oxidation and the modifications of functional properties remain reasonable and allows to propose egg products enriched in ω3 fatty acids without changing standard processes