Lipid oxidation in egg products: impact of process, storage and lipid composition

Anton M., Meynier A., Beaumal V., David-Briand E.

UR1268 BIA (Biopolymères Interactions Assemblages)
INRA, 44300, Nantes, France
e-mail: marc.anton@inra.fr
• egg products: functional ingredients (liquid or powder) for food industry
 - bakery, sauces, pastas, ready to eat food, ...
 - technofunctionality, sensory and nutritional properties

• strong interest in increasing nutritional properties of eggs by enriching hen diet by Ω3 fatty acids
 → Ω3 enriched shell eggs

• with the aim to make Ω3 enriched egg products, thermo-mechanical treatments of conservation (pasteurization & spray-drying) can alter these properties → risks of oxidation
Effect of ω3 supplementation on lipid oxidation combined with egg processing conditions (pasteurisation, spray-drying and storage)

Goal of the study

- Hen’s diet (standard vs ω3 supplemented)
- Egg’s production
- Breaking
- Cooling
- Pasteurisation
- Spray-drying
- Storage
- Powders
- Liquids
Yolk: a multi-scale structure

- a new point of view: yolk is a nanoemulsion of LDL structured by granules (network)
- natural nano- and micro- assemblies
Plasma/granules separation

LDL (plasma)
Lipids in egg yolk

- 66% yolk DM
- Ø 17-60 nm
- 90% lipids
- 10% proteins
- \(d = 0.98 \text{ g/cm}^3 \)

- 70% TG → neutral
- 26% phospholipides
- 3.5% cholestérol
- 0.5% others ...
Lipid oxidation chain ... and products

- **PUFA #1**
- **Fatty acid radical**
- **Peroxyl fatty acid**
- **Peroxidized fatty acid**

- Hydrogen abstraction
- Molecular rearrangement
- Oxygen uptake

- **PUFA #2**
- **2nd fatty acid radical**

- **Cyclic peroxide**

- **Heat or hydrolysis**

- **malondialdehyde (MDA)**

- **Primary products**
- **Secondary products**
- **Final products**

- **Time**
- **Arbitrary Units**

→ difficulty to assess all the process
→ a poor quantity of primary products not necessary means an absence of oxidation

→ PUFA very sensible
Liquid egg products
Liquid egg products

- **Diet**
 - Standard diet
 - ω3 enriched diet*
 * Extruded linseeds

- **Treatment**
 - Shell eggs
 - Pasteurized
 - Shell eggs
 - Pasteurized

- **Samples**
 - Std-shell
 - Std-past.
 - ω3-shell
 - ω3-past.

- **Measures**
 1- Lipid composition
 2- Lipid oxidation and antioxidant levels
 3- Physical properties
Lipid composition

- **ω3 enriched eggs**: ↑ PUFA (18:3 n-3 in NL, LC> 20C in PL (22:6))
Lipid oxidation

Secondary products: malondialdehydes (MDA)

- diet or pasteurization: slight effect on MDA
 - no oxidation
• diet: no global difference, same levels of tocopherol
• pasteurization: no effect
Carotenoids

- Lutein consumption
- Zeaxanthin consumption

• diet: supplementation in carotenoids
• pasteurization: carotenoids → protective effect to limit oxidation
Conclusion (1)

ω_3 diet effect
- ω_3 enriched eggs contain higher proportion and amount of 18:3 n-3 (LNA) in NL and 22-6 n-3 (DHA) in PL
- ω_3 enriched diet brings important quantities of carotenoids

Pasteurization effect
- carotenoids are consumed during pasteurization
 \rightarrow protective effect against oxidation
- no enhancement of MDA: no oxidation due to this effect

Whatever the sample
- very low level of HPX and MDA
 \rightarrow no detectable oxidation, no effect on sensorial properties on liquid products
Spray-dried egg products
Egg products: powders

- Pasteurized eggs
 - Standard
 - \(\omega 3 \)
- Drying process
 - \(T^\circ = 160^\circ C \)
 - \(T^\circ = 180^\circ C \)
- \(T^\circ \) powder storage
 - 15°C
 - 30°C
 - 15°C
- Samples
 - Std-160-15
 - Std-180-15
 - \(\omega 3 \)-160-15
 - \(\omega 3 \) -180-15
- Storage time
 - 1, 2, 4, 8 months

- Measures
 - 1- Oxidation and antioxidants
 - 2- Functional properties
Standard diet products

MDA

1 month 2 months 4 months 8 months

Pilot test

Lab test

• ➔ MDA / liquid
 ➔ MDA with T° spray-drying
 important ➔ MDA with storage T°
 and storage time
 ➔ of oxidation due to spray-drying

• differences between pilot and industrial processes
 ➔ more detrimental

• levels “reasonable”!
 ➔ no sensorial degradation

MDA of liquid products
Antioxidants

\[\text{\(\mu\text{g/g lipids}\)}\]

\[\text{\(\alpha\)-tocopherol}\]

• slight effect of spray-drying: \(T^\circ\), storage \(T^\circ\) and time on tocopherol content (excepted at high \(T^\circ\))

\[\text{Lutein}\]

• lutein due to spray-drying
• important effect of storage time
→ reserves are consumed to protect against oxidation

Antioxidants

1 month

8 months

Liquid products

Std-160-15

Std-160-30

Std-180-15

Standard diet products

Liquid products
Comparison standards and ω3

MDA

- 1 month
- 2 months
- 4 months
- 8 months

MDA between Std and ω3

- General: MDA between Std and ω3
- Important: Oxidation due to enrichment in ω3

- Others effects (drying T°, storage T° and time already observed)
Comparison standards and ω3

Antioxidants

• less tocopherol in ω3 samples → more consumed during spray-drying

• more important reserves of lutein for ω3 samples → being consumed also

• tocopherol and lutein remains in sufficient levels to act against oxidation

α-tocopherol

μg/g lipids

Std-160-15 Std-180-15 ω3-160-15 ω3-180-15

Lutein

μg/g lipids

Std-160-15 Std-180-15 ω3-160-15 ω3-180-15
Comparison of whole and standard egg powders

MDA

- effect of albumen proteins? (metals, degradation, ...)

Yolk

Whole egg

n mole/g lipids

Std-160-15

Std-160-15

1 month 2 months 4 months 8 months
Conclusion (2)

Spray-drying effect
- MDA as compared to liquid products
- enhancement of oxidation
highly accentuated by spray-drying T°, and storage time and T°
antioxidants are consumed to protect against oxidation

ω3 diet effect
- MDA with ω3
- presence of ω3 PUFA enhances oxidation
but ω3 enriched diets are supplemented in carotenoids

Practical point of view
low levels of oxidation in this study
sensorial and nutritional characteristics conserved after 8
months of storage
Functional properties
Thermal properties
Fusion profiles of lipids

Liquid products

- Melting T° of lipids is diminished for ω3 enriched eggs
- No difference between processing parameters

Powders
Physical properties

- Spray-drying disrupts yolk structures (easier lipid extractability) ...
Protein solubility

... and affects protein aggregation (lower solubility under higher spray-drying T°)
Emulsifying properties

Liquid products

- Mean: 0.42 µm

- Spray-drying allows smaller oil droplets (but slight difference)

- No effect of diet or process parameters

Powders

- Mean: 0.36 µm
General conclusions

• pasteurization/spray-drying processes combined with enriched ω3 diets affect physical properties of egg yolk products but the impact on emulsifying properties is poor

• pasteurization and spray-drying, as they are generally conducted, affect oxidation of lipids and this alteration is enhanced by the enrichment in ω3 PUFA

• the levels of oxidation and the modifications of functional properties remain reasonable and allows to propose egg products enriched in ω3 fatty acids without changing standard processes